Increasing progranulin levels and blockade of the ERK1/2 pathway: upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia.
نویسندگان
چکیده
Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder marked by mild-life onset and progressive changes in behavior, social cognition, and language. Loss-of-function progranulin gene (GRN) mutations are the major cause of FTLD with TDP-43 protein inclusions (FTLD-TDP). Disease-modifying treatments for FTLD-TDP are not available yet. Mounting evidence indicates that cell cycle dysfunction may play a pathogenic role in neurodegenerative disorders including FTLD. Since cell cycle re-entry of posmitotic neurons seems to precede neuronal death, it was hypothesized that strategies aimed at preventing cell cycle progression would have neuroprotective effects. Recent research in our laboratory revealed cell cycle alterations in lymphoblasts from FTLD-TDP patients carrying a null GRN mutation, and in PGRN deficient SH-SY5Y neuroblastoma cells, involving overactivation of the ERK1/2 signaling pathway. In this work, we have investigated the effects of PGRN enhancers drugs and ERK1/2 inhibitors, in these cellular models of PGRN-deficient FTLD. We report here that both restoring the PGRN content, by suberoylanilide hydroxamic acid (SAHA) or chloroquine (CQ), as blocking ERK1/2 activation by selumetinib (AZD6244) or MEK162 (ARRY-162), normalized the CDK6/pRb pathway and the proliferative activity of PGRN deficient cells. Moreover, we found that SAHA and selumetinib prevented the cytosolic TDP-43 accumulation in PGRN-deficient lymphoblasts. Considering that these drugs are able to cross the blood-brain barrier, and assuming that the alterations in cell cycle and signaling observed in lymphoblasts from FTLD patients could be peripheral signs of the disease, our results suggest that these treatments may serve as novel therapeutic drugs for FTLD associated to GRN mutations.
منابع مشابه
Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.
Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased rel...
متن کاملProgranulin: at the interface of neurodegenerative and metabolic diseases.
Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as...
متن کاملDisorders of the Nervous System Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice
Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from t...
متن کاملEffects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice
Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from t...
متن کاملProgranulin, a Glycoprotein Deficient in Frontotemporal Dementia, Is a Novel Substrate of Several Protein Disulfide Isomerase Family Proteins
The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abunda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2015